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Abstract 

In this article, the general boundary relations for 
a source-driven physical antenna are formulated in a strict- 
ly Maxwellian sense« Therefrom, by invoking the limiting 
condition of infinite conductivity for a lossless antenna, 
we arrive at a'.simple radiation boundary relation which 
brings forth the significance of the field expansions for a 
non-radiating source and at the same time indicates the way 
for a first order solution* This then characterizes the 
formulation of our present boundary-value problem of a 
"closed system" and also differentiates itself from a dif- 
fraction problem for an "open system" as far as Maxwell's 
field is concerned* 

The formulation appears rather unfamiliar at first 
sight, but some reflections on the energy balance relation 
In macroscopic phenomena and especially on Dirac's treat- 
ment of radiation damping, of election will help justify our 
present argument* 

The first order solution for a source-driven finite 
cylindrical antenna obtained by using the simple radiation 
boundary condition gives rise to a geometrical factor which 
indicates the condition of resonance of the system. The 
necessary procedure to take into account the effect of in- 
ternal impedance of a real antenna is indicated} but, 
thanks to the principle of superposition» this modification 
* Received 20 February 1956* 



does not change the essential feature« obtained for the 
case of a lossless antenna. 

1»,,., Theory of Radiation Boundary Conditions 

This article — regarding the boundary conditions of 
a source-driven antenna — is rather popular'.  In the sec- 
ond and third sections» we shall use a finite cylindrical 
antenna to illustrate the theoretical and praotical appli- 
cations. The importance of this theory of"boundary condi- 
tions can be explained as follows. 

In the classical solution of antennae radiation 
problems, we assume that the electrical current possesses 
a sine curve distribution in the antenna and thus, we find 
the radiation field. This method of solution is certainly 
a crude approximation, since we do not consider how the " 
sine curve current is produced or how it reacts in rela- 
tion to the energy source.  In this kind of solution, the 
matching impedance of the antenna and. the energy source 
are taken care of individually according to the'line theory. 
In other words, we consider the closed system of "energy " 
source-antenna-space" as two open svatens and, in solving, 
we do not apply Maxwell's Electro-magnetic Theory ri^jdly. 
ihis approximation simplifies the method of treatment and 
proves to be satisfactory for engineering applications. 

In recent years, however, the increasingly wide- 
spread adoption of ultra-short wave and microwave has 
necessitated further understanding of the mutual Interac- 
tions of different currents on antennae and the precise 
reaction of energy sources towards the current.  If, as 
stated in the previous paragraph, we neglect the finite 
boundary conditions of the antenna, then it is not nossible 
to nave further understanding (assuming also that the cur- 
rent has a sine curve distribution in the antenna).  In 
otaer words, we must take the antenna system as a boundary 
vaxue proolem xn conjunction with an excited enerpy source, 
hence, a lorced oscillation problem of a finite conductor 
SJ™™* .-ince Itoell and Hertz, this question has been 
observed m both theory and practice. Especially in none 
recent years, the interest for research in this area has 
been^keener as tne methods of analysis have become more 
precise.  But it has always been neglected and not dis- 
tinctly distinguished.  The forced oscillation of s  con- 
SJS 5?^ 5? dlvlded into two kinds.  Oho first kind is 
uhe aifiraction question.  The conductor, by absorbing 

?o"^tr;m???tl? ener^ f'°r the i^ident wave, produces 
for.oa otrcilxacion and then radiation.  The energv source 
of tne incident waves is beyond the scope of our eonsidera- 

2 



tlon, and is not Influenced by the diffraction body. The 
second problem is the one that we are to discuss now. The 
conductor (antenna) combines direct with the energy source 
and is excited, producing forced oscillation, and radiates. 
Hence, the energy source is strongly reacted by the radia- 
t-Jon body. The many aspects of the diffraction question 
have been investigated in detail by many authors, and their 
findings are contained in many authoratative works. But 
the problem that we are. about to address ourselves to — 
the radiation problem of the closed system of "energy 
snuree-antenha-space1' — has never received the correct 
theoretical development«  This article may tell us the 
importance and significance of the two previous kinds. 
All in all, we can state that the diffraction problem is 
an open svsten, one of the Maxwell Electro-magnetic Field, 
whereas the antenna radiation discussed in this article is 
a closed system problem« 

Prom the previous discussion, we know that the 
forced oscillation problem of a finite conductor is, in 
feet, a closed system of Maxwell's Electro-magnetic Field. 
It consists of; 1) the source; 2) radiation antenna of 
finite size; and, 3) infinitive, proximity space through 
which the electro-magnetic wave energy radiates outwardly. 
In such a problem, it is a simple matter to fix the finite 
geometrical shape and 'boundary of the antenna conductor. 
How to add energy source into the antenna is, however, not. 
a simple problem*to solve« R. King and his collaborators 
have made a systematic investigation of this aspect. Ac- 
cording to the realities of physics and engineering, and 
the convenience of mathematical calculations, we can as- 

energy source is 
to a very small gap 
1 represents an ex- 

sume the following to be King' 
a finite potential difference 
in the middle of the antenna. 

method 
o added 
Diagram 

Z-SSIl 

tsiu32rr?ic.Ci')~ 

fclBLEfcT<äCC&) 

Diagram 1« Cylindrical Antenna Model. 



ample of a cylindrical antenna conductor.  Since the energy 
source gap Is so snail, the electrical current in the tv?o 
halves of the antenna can be considered as continuous, 
vVith the above statement and understanding, v;e can further 
establish the formula of Maxwell's Electro-magnetic Field 
in the two media of the antenna conductor and exterior free 
space. Because no electro-magnetic wave energy can be 
transmitted to this system from outside, it must be a 
closed electro-magnetic field system. 

For clearer understanding, this problem must adhere 
rigidly to the significance of the Maxwellian Field Theory. 
Let us look at the system of equations used by some authors. 
In the antenna conductor media, they use 

v x E, + -~ B, = r>, (a) 

fxHj- -~- D, = J, ~ *, (E,'+E,) .    (b) , 1. 

v - B, = o , (c) 

v - Di = Pi. (d) 

V • J, + -~- pj - 0 . (c) 

El> Dl* Hl» a^d B1# are the electro-magnetic field pro- 
duced by induction current Jj and chargeP%s  on the conduc- 
tor«, "&i  is assumed to be the only field produced, bv the 
energy source.  Prom the strictly Maxwellian Field stand- 
point of the Incompleteness and the inappropriateness of 
the equational system (l) are obvious» 'Regardless of ho?; 
the high-frequency energy source is added to the antenna 
conductor, It produces not only a field E*i, but also, 
simultaneously, displacement current#»D!x and equivalent 
magnetic fields l\  and Bj. According *to the principle of 
superposition, the complete Maxwellian Electro-magnetic 
Field equation system in the conductor dielectric"must be: 

v x EJ + 4~ BJ = o ,      v x Es + -f- B, = o , 

v x !H[ + HJ - -g- ID,' + D,J = J, = ai IE? + E] 

v • Bj = ü ,       v • B, = o , 

v - [D[ + D,3 = P, , 

•Ji+^ft-«: 

(a) 

(b) 

(c) 

(d) 

(e) 

(2) 



-TV '*'■■ ."A        V^ \''~- ?\ fi^. "! s*^ r^J T"l :>Y the energy source,» 
represent the reaction tu© con« 

»etv/een energy 

where fields with prin 
and field» without prl 
duetor dielectric.* !Rr* linear interaction 
source and reaction will be determined entirely- from the 
formulae (2b) and (2d),-and produce, in the conductor, tba 
combined current Ji arid eharg'©" {*&•■* ■= _ 

In the external free^space dielectric f2) —'since 
its conductivity equals aero -~ neither the conduction 
current nor the charge oan exist. Therefore, interaction 
formulae (2b) and (2d) can ho separated, arriving at the 
following combined system of equations of two independents 
—. energy source field and induction fields 

v x Ej -f 

a 

=•- o, 

v • DJ " 0 , 

o, 

v x Ej h "7 Bj ~ ft 

V X 

V - 02 =•- 0 . 

D, - o 

(a) 

(b) 

(c) 

!,* i 

(3) 

From the Maxwell! an field equation system of indue 
tloB fields in the two dielectrics and energy source, the 
usual "boiuidary relation tells us- that on the boundary sur. 
face of the conductor, the tangential component of the 
electric field and magnetic field of two'dielectrics raust 
be continuoust 

""' } (4) HJ-:-Hih«"{HJ+riij,. 

= IEU-E;), 

^Theoretically speaking, if the expansion form E^ g 
he source field of tro dielectrics is knowr£ 

Induction flaid Ei o and 
and B' '* 2, g of tin 
•we can definitely find out th 
Hi g» and the induction current and charges on the"conduc- 
tor "fro*« formula (4)* However^ the importance and meaning 
of the usual boundary relation, in (4) is. not in the mathe- 
matical technique of expanding the source field, but in th* 
basic concept of interchanging action between the source 
field and the induction field« Using the ideal limiting 
conditions of infinitely large conductivity of the conduc« 
tor, we can easily understand this concept« When the con- 
ductivity ('of a conductor) is infinitely large» the elec«. 
tro^magnetic field in the conductor is equal to seroj end 
forrcula (4) la simplified according to the following form: 
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"= irfr»;-rKa],, \ (5) 

Since energy source and induction field are the con- 
tinuous inunctions of space and time»- relations of formula 
(5) are accurate not merely in boundary surfaces of two 
dielectrics, but also at every point in the external free- 
spaee» Thus, because the components of electro-magnetic 
field have a singular nature, we can arrive at the follow- 
ing "no loss" general relations for an antenna: 

Hi+H»»o,  ES + E» = o. (6) 

Hence, source field and induction field simply can- 
cel out each other in outer free-space« That is not"to 
say, however, that an excited "no loss" antenna does not 
discharge radiation» As a matter of fact, according to 
naturally logical results obtained from the Maxwell Field 
Theory, it should be regarded as the equilibrium energy 
relationship between energy source and response» Similar- 
ly, in formula (4), in respect to an antenna with limited 
electrical conductivity, the energy source, besides pro- 
viding radiation energy, also has a field to overcome the 
internal impedance of an antenna. Since the Maxwellian 
equation Implies the principle of energy equilibrium we 
can, therefore .. to boundary relationships obtained by 
closed systems of an energy-included source — imply the 
same principle. Prom this, it can be seen that our deri- 
vation and explanation above have not established anv new 
concept outside the Maxwellian system« Energy source field 
E«g and H«2 are merely a mathematical guide field and in- 
duction field Eg and Hg must react according to its model. 
This is the same as the Newtonian principle of "an equal, 
ana opposite, reaction for every action", This is the 
characteristic of the logical derivation according to the 
Maxwelxian "closed" theory, and tells us clearly that the 
energy source provides merely radiation energy, but does 
not itself produce radiation directly. The actual radia- 
len source is the induction current having form on the 
antenna. At the same time, the above derivation distin- 
guishes clearly the problem we are discussing at present 
and general diffraction problems. In the diffraction prob- 
lem, the conductor receives electro-magnetic wave enersv 
from an external energy source,- hence, it is an open sys- 

J™ ;rAtS0SinS at iJ froffi the point of view <* the Maxwell- 
ian *ield Theory. In the problem we are now discussing 
«™If' c°nductfr absOT*>s energy directly from the energy 
source, and reacts to the energy source according to th* 



geometric forms and physical properties of that conductor, 
whi3e the energy source itself does not produce radiation» 
Hence, regarding this from the standpoint of the Maxwell- 
ian Field Theory, ^energy source-antenna-free space" does 
constitute a closed system* 

Therefore, formula (6) is the general radiation 
boundary relationship of a non-radiation energy source 
excitation for a "no loss*1 antenna« Because the energy 
source does not produce an electro-magnetic field in an 
ideal conductor antenna, the energy source field 1«2 and 
H*P of outer free-space can be computed Tery easily froro 
the determined form* of energy source*, In the following 
two sections,  we will use this radiation boundary rela- 
tionship* solve the problem of a finite cylindrical anten- 
na with an internal energy source potential difference V0# 
As to the effects of the internal impedance inside the 
antenna, we can fill it up with suitable radial distribu- 
tion of the energy source voltage* 

■. Having understood the concept of this derivation, 
and the character of meaning of the boundary relationships 
of an ideal ttno loss1' antenna, we can further find the 
complete meaning of formula (4) for the application of 
finite electrical conductivity antennae» Since the mean- 
ing of the two equations of relationship (4) are the same, 
it"*suffices if we only discuss the second equation concern- 
ing the field* From formil&e (5) and (6), it can be seen 
that the radiation components of E*g and'Eg exactly cancel 
out each other* Hence* what remains on the right side of 
formula (4) is only the "residual8 of "local'1 field* Sup- 
pose we let 

E2 " Eids« + EatisM» »   ) 

E2 — E2(nd) "k" EjO«»t) 
(7) 

And, from forsailae  (5)  and (6), the radiation fields are 
naturally cancelled out: 

EJt,»d) + Ei<«<i> = 0 (8) 

Then,* the second formula in relationship (4) can be mich 
simplified -by the following forms 

I El + Ei "J,.« (EW.» + Eati«.» I - {9) 

From-the two simultaneous equations in formulae (8) 
and (9}s if the energy source field is known theoretically, 
then we can completely determine the radiation component 
and the local component of the induction field Ejs* But, 



this method of finding a solution has two serious ^aw- 
tacks: first, even if the energy source voltage has very 
simple antennae specifications in »ee-JPMj. th• •£>££ 
YW»O£*H." field produced by the-energy source is still very 
ÄoYinS second. toyaol« *f *f *"~0f Si 
i-ifli eauations of formulae (8) and (9), though not entire- 
l^L^SSK. it is very complicated. Because of these 
difficulties, we have to rely upon the J^lg **£a£«Jr 
boundary relationships of formulae (5) and (6), in o™er 
to solve the radiation problems in outer free-space in a 
»no W' antenna. Afterwards, we again use the disturbance 
method So SSSSSe the effect of its Internal impedance in 
a "no loss" antenna. ***■»*»* 

From what has been described above, the deduced 
physical meaning' of our accurate derivation -- ripe with 
implications — is also very important. Concerning the 
fundamental concept of the production and the action of en- 
ergy^ource field and induction field, with the exception 
of what was discussed above, now this "closed derivation 
shows the meaning of intereffects between energy source 
and induction. We can limit the form of energy source, but 
before knowing the accurate reaction function, we cannot 
limit the expanded function of the field. They saust he In- 
ternally compatible in the Maxwellian system, and conform 
to the principle of linear superposition Included In formu- 
lae (2) and (3). Naturally, this is the characteristic of 
closed deduction for any physical phenomenon, Einstein's 
deductive Theory of General Attraction is an example» In 
our present problem, as long as the actual space dielectric 
has a little loss, then the energy field and reaction field 
interact and interhinge through the whole time-space sys- 
tem. Hence, it is very difficult — a3jnost Impossible -- 
under the general conditions, to find the accurate equili- 
brium state of energy field and reaction field In the Max- 
wellian system. Fortunately, under ideal limiting condi- 
tions of "no loss" antenna and free space, we get very sim- 
ple formulae of radiation boundary conditions, and their 
solutions are obvious* 

2.    Symbols and Terms in Energy Source and Antennae Systems 

For reference, see Diagram 1 (page 3). Symbols and 
terms used in this article can be described as follows*. 

2h..................Total length of cylindrical antenna; 
a.•*.........« radius of antenna? 
b thickness of very thin cylindrical 

surface layer — high-frequency cur- 
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rent flows through this thin layer, 
U <$,  8, * 

V0*.6...*••.♦». »«.«.potential difference of energy source 
(or thin-plate voltage source) of 
circular symmetry; 

(i o, /o0,9o)*•*•»• ••••*^"i lay®** b* co-ordinates of thin- 
plate voltage source»^ Saa; 

(G ,<<v *<>)•»••••••••••• co-ordinate of circular sysaaetry in- 
duction current in layer b9^ % a; 

(t;f r9 $}**•• • »«••«co-ordinate of observation point P; 
(-is^TV <po)••••■•• -«••<•• co-ordinate of points of the cylin- 

drical-base charges Qfeh.)»j% s= aj 
!(£}»••••««•••«•»••average induction current density in 

layer b -- its equivalent volume 
charge density is q; 

QOfch}«•*••••••••••»average base charge densityj 
., e"***• • • • •• «•««.. • ••exponential time co-efficient ; 

*? = w*fti«j + i to PI ei,   •♦ppopagational constant of dielectric 
(1) of the circular conductor; 

<2~<öV*«J +;«>ftffj. • «propagational constant of dielectric 
(2)* of outside free-space; 

AD = ^3 + ft - 2 r Pa cm  '(?, - 0) + (*-0)*l* 

distance from observation point P to 
every electric sourceI 

■ A, = [V + ^ _ 2 r pa  cos (9a- 5) 4- (* - C)?l*. • ' 

distance from observation point P to 
every induction current! 

(10) R* ~ ^ + PD ~ 2r/!'0 cos (9a- Ö) + (* - Ä)3]*, 

distance from observation point P to 
base charges Q(+h); 

Ri - [r2 + /g - 2 r ft cos (p0 -<?) + (* + A)*]*, 

distance from observation point P to 
base charge Q(-h)j 

expansion form of Hertz function for 
©vary component (&0,ft ,yc) of the 
voltage source (about its derivation, 
see. Appendix) | 

\ **•> I — j 4 K m t% R\ 

expansion form for all points of the 
Hertz function of the induction cur- 
rent I(£)d£,. 
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d 

(13) 

the continuity equation of base 
charges Q(dth); 

**        ^ 45T«2Rj 4«62i?3 (14) 

— /' 4 »ta e2 i?2 /' 4 » w 8j R3 

the two base charges Q(±h) equiva- 
lent to the scalar potential func- 
tion for every point. 

In this article» . M.K.S. units are employed to cal- 
culate all formulae and field quantities, 

3.» Theory of Energy Source Excitation of a Finite Cylin- 
drical Antenna» 

Diagram 1 shows a finite cylindrical antenna inside 
of which there is a thin plate of voltage source. Under 
very high frequency» it can be proved that the current a. 
long the cylindrical axis is limited in a very thin sur- 
face layer. Since our present interest is the investiga- 
tion of high-frequency energy source excited antennae, we 
can assume the thickness of that current surface layer to 
be b, where b is rauch smaller than the radius of the cylin- 
der, a. Therefore, the distance  between the thin cur- 
rent layer and the cylinder axis, can be said to be equal 
to radius a, as Indicated in the formulae in the second 
section. Although the radial current in the antenna is not 
entirely equal to zero, it can be completely disregarded in 
practical calculation of radiation fields when compared 
with the main axial current in layer b. Since axial cur- 
rent is not absolutely equal to zero at the two bases of 
the cylinder, we can naturally assume that surface charges 
exist on them. They also fulfill the equation of continuity 
formula (13) above» The simple model above accurately 
represents the actual situation of a finite cylindrical 
antenna under high-frequency energy excitation. At the 
same time, it has singularness in the sense of the Maxwell- 
ian system. 
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ft*:.-«*; vi 
I,;;,,   «IS, Sf 

fc.a~.tWrf *<LVjÖ# ij»-*'ii,"=* " 

I  A 

r 
r 
! 

Diagram 2« Region of Integration, 

Now we can use the radiation boundary relationship 
(6)s and the simple model indicated in Diagram' 1, in order 
to calculate the field components along the s axis, 

CM OJar 

where XI0 is the total Herts function of the. energy source 
II is the Harts function produced toy the density q/of the 
induction current and volume charges«, ■ 0  is the total 
scalar electrical potential produced by the changes on the 
two base surfaces. Since th© radial*, or r-component, of 
the field can he accurately calculated from its z-eomponent 
using Maxwell»» field equation — it will suffice if we 
calculate th© z-component of formula {!&)„    ■ 

il'he differential forms of the three functions IIOJ 
II, and $ have bean expressed in formulae (ll), (1£), and 
(14) — in the second section» Due to the fact fchat the 
energy source, induction current and charges on base sur- 
faces of the two half .»sections of the antenna are anti- 
symmetries!* we need only compute the field along the posi- 
tive a axis* Diagram 2 shows three different Regions, 
Within each region, different potential functions must be 
accurately expanded«, The  following is their derivations 

We expand the Hertz function II0 of the enerpr "ounce 
in the following manner* 

ft,. 2  J-« Ho° (^'"^ ^Tti-lWo'cM&^'O) +  (jr-O)*) e»»dk 
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—   j - - 

^A , >> p.,-. 

(16) 

>■ < Pa- 

a -u 4.4* ,4.4«* formula (16) into formula (11),  and integrals- 
?ÄÄecHoVo f-» 0 to a*« get the Hartz fun*- 
tion of total energy source: 

- '"'(l°")f A^M''v/^F) //"" ^«T1^)''"^-   r <- N 
We expand the Hertz function II of Induction cur- 

rent I(£) 

(18) 
». i 3-«     ° 

2 -t P ■/,(/><> v^FF) HI" (r A/4FF) *"•'--> ''M*-fl <"■  '• > *• 
to     J — * 

n J - * 

Substituting formula .(IB)  Into fonrtula (12),  and integrat- 
ing with respect to «p0, we obtain 

jn = 

J,.-,. JSniL V" bpah{p6 •*FjP).Hi" (r V«-Aä)^«-f« «*   r> A 
j —4uJ S; J-* 

—4ws2 J-* 

(19) 

In our present problem, we need only integrate 
farimila (19) in Region II with respect to%, and we.have 

fl «,./_JL_^P*AMA *'¥=*> x (20) 
\— 2(1» «2/ }-* , 

X Hi" 0- V*FÄ*) «tt«"» [ J* '(C) »* AC «tf] 

We expand the scalar potential function 0, produced 
by the charges on the base surface 

(21) 
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Substituting foKsula (21) In formula (14), and integrating 
with respect to-^0, w& get the function $ in Region II 

4> - e~>"'(—~~A V~~ b p0 UP,, VW) x 

X BiV (r y/&-¥ ) <-■*• (- /(*) / sin U] dk . 

Substituting formulae (175, {20}, and (22) into radiation 
boundary relationship (15), we get the following identical 
equation in Region II 

f'~'*lf j** ^PoUfio^E"^} &f> o-v'lPF) die**' x 

x {(**--*) \*- --A- f /(c) cosKdA + -^aM. mU. 

In Region I, we can also obtain the same identical 
equation, but to integrate with respect to £ ia a very 
complicated process* We will not discuss it; further here. 
In equation (25), as long as the functional constant In the 
bracket is zero* then formula (23) in the radiation field, 
or on the boundary* will In any case be completely ful- 
filled* ■ Hence, we have the following relationship 

f' HO cos AC dc - i-2f&. + ^f i(A) <24> 

in which we can compute the function I(^) of current dis- 
tribution for a wno loss'* antenna in a si mole model as %, 
shown in Diagram 1* From the simple model"of this antenna 
in Diagram 1, we kno?/ that 1{%)  Is the even function of,\. 
It must also be the even function ctK,  for if I(<) ia the 
odd function ofX, then the integration of the constant in- 
duction Herts function II with respect to  will make II 
equal^to aero* Prom the above* we can assume the solution 
of li%»}  in formula (24) to be 

*<0--i*4^G<*)co.ac:- - (25) 

where Gf**) must be an even function of A,., and is dimenaJ on- 
less« Substituting formula (25) into the two sides of 
formula (24), whilo Integrating with respect tot . we set 
the solution of G(X) s t» »   0 

«aw -— [1   *slnAA . _  4^      ,il      (26) 

Hence, (1{>4 is actually the even function of %,  and A., 
simultaneously. Here we should notice the following: 
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formula' (25) la still the operational function of !(%)• 
Its operational parameter isX» When we substitute 1(\) 
of formula (25) Into formulae (20) and (22), and after in- 
tegrating with respect to A.* we get the algebraic solution 
of induction potential function. Substituting these II 
and 0 algebraic solutions» 

Q(- B2 = ftt s2 v  x f - J~ If) &    Hi = ) U> S2 v x n; 

(27) 

we get the algebraic solution of field Eg and EU of the 
space dielectric. Finally, from the following simple 
formula, 

'W - I l«»l..„ - r-±t*~[i 4,,,,        (28) 

we get the algebraic  solution of current  distribution on 
the antenna.    The above procedure for finding a solution is 
the special characteristic of finding the integral over a 
complex number surface {^surface here)  of any boundary 
value problem*    In our present problem, the harmonics, or 
standing waves,  caused by the finite boundaries of an an- 
tenna conductor, will show its form only after the opera- 
tional form has changed from    -integral to algebraic form. 

From formula  (28), after arriving at the current 
distributional function, we can give the following defini- 
tive relationship of the induction point admittance or im- 
pedance of a "no loss" antenna: 

v0» i = **p± j(0),, -ziim»** |„f_ nj        . (29) 

where Y. and Z, respectively, are the induction admittance 
and impedance of the energy soitrce in the center of the an- 
tenna«, 

Calculation of II function in Region I.  Now we can 
substitute I«;) in formula (25) into formula (19), and in- 
tegrate in Region 1 with respect to^, since I(-t) Kt). 
We have only to calculate the range of «Xzih, equal to the 
upper-half region of the antenna? and, in this z  range, 
the operational parameter must have a positive imaglnerv 
number component, 

^'-'"'(z^lljtoMpt^^H1» (rVW^GiX) dk[§*y *l*-<l cos AC^] = 
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■=--.-. f. • ■ dl \ 2 j* f (cos KY dC + 2 cos A* \   «.""« cos IC de] = 
J L Je Ja J (30N 

= ••-[••• 41 fieosJUrT UonKYdcl = •» f-«öt [•——£. (2/.A -!-«s ?**)}, 

The last two lines can be'obtained from the-properties of 
even and odd functional integrating with respect toX.» 
The factor in formula ($0)t "" 

2e-'"" cos A* — ^a*-«*} -f ff-/a«+»«>} 

clearly points to the following:    this Herta induced poten- 
tial function or current is a standing wave;    that is to 
say? the multi-reflection w&ves of different Eigen values 
toX..»    This is again just what we would expect tVbe the 
result,  as far as the  effect  of the two flat base  surfaces 
of a    no loss    antenna is concerned,,     Since the integration 
quantity in formula {30}* with respect toK, has an even 
functional property,  the Jv-surface integral calculation can 
be written into the following forms   . 

n « f-,-*(ijQI*" t Po Mfio v^rF) Hi1 > (r VfFF) x (31 j 

.   "     L (*|-AJ) (2AA + in 2A/0 J     dA ' 

As to the scalar potential function 0,  caused by the charges 
on the two bases,  it has the following form.* 

I.   2>Asin2Ä* >(#-**) J 

(32) 

The integral quantity in formula (31) shows that we can add 
an infinitely large half^circumference on the upper-half 
of the3Vsurface, in order to jaala a closed-curve integral, 
without affecting its result.  As shown in Diagram 3 (see 
next page): % 

*a-*o 
point is a branch point on the closed integral curve V , 
but?v.^ko point should be outside of the closed curvet. 
lh&  xntagral quantity of formula (31), except outside the 
branch point N**kg» still has the following transcendental 
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equation 

l - 2AJsin2A/» 
«i-Al)(2AA-|-sin2ÄA) 

as 0 Sift IXh (33) 

the roots of which have numerous  simple poles*    We can very 
easily prove that\«0 is not a root  of formula  (33), and 
that all its roots raust have the positive and negative com- 
ponent  of complex numbers.    Let X*ms represent the different 
complex roots of transcendental equation (33), and let Br 
represent the suitable branchcut from ^vsH-ko to infinity« 
The integral   result of formula (31)  can be written in the 
following manner: 

/! =  .<&  dk j;;;-<& + 2*i2 R»W-) (54) 

The R« s residues at different X»s poles all have a 
negative exponential damping factor. That is why these 
similar residue waves are really the localized waves con- 
centrating at the energy source point {z=±0)m    At points 
on the antenna a bit too far away from the energy source 
point (or surface), these residue waves become verv weak 
as a result of damping. Hence, at different points where 
i* °,°2 the ante3^a> IX — the main component of the in- 
tegral form — is integrated along the branchcut, and these 
resultant residue waves, R»ms, can be entirely disregarded 
in the calculation« But the accurate calculation of these 

/ 

/ r 

/ 

hr 

oUW 

=t-i— ss- 
\.«-Jc, 

\ 

Diagram 3. X.-surface Integral Curve» 

branchcut integrals is still very complicated. So, in dis- 
cussing the following two conditions, 

(next page) 
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a) Non«harraonic , , ,tL \ 
conditions     s ^ *#*,«*   * ^ — 

b) Kanaonic | n — 1,2,.? ••■,     (35) 
conditions     : 2, A, =      .«.   h ^ ?J± 

4 

We will use an appropriate approximation method« The X0 
in foiRiuia (55), represents the wa^r© length of energy source 
frequency in free space* 

&) Non-harmonic conditions» From formral&e (31) and. 
(34)s and from Diagram 3g  w© note that when we ascend along 
the braneheut &T9  larger and larger negative expotential 
damping factors make the» resulting main component of the 
integral approach kp from A.» Then,- in the vicinity ofX% ■ 

kg3 we can remove "Very slowly the factors In the variable.' 
values in the integral sign* Thus* we obtain 

V     0^3     / sis 2 fo« Je- 

i»höre the term Jc  {f*0VkJ->£)  in formula  (SI),  in the vi- 
cinity of^-fajkg,  can be treated as constants  J0*l»  ' She 
forrittila thus'obtainedj. has already no pole inside the in- 
tegral^ sign.    Hence, we  can' place the tranchoiit integral 
Br hack into the actual real number axis position,  getting 
the following resultj ' " 

\     B ki    / si» M% ft j •- *, -      a     - .  - 

mere the last lin« in the formula is obtained from the 
spherical waves fro« Fonriers« Transformation,-at i>0, and 
any value of z,  have equal corwergent properties. Hence, 
it is differenti&ble with respect to za 

b) Harmonic conditions* Suppose we do not need a 
more accurate calculation of formula (31), then under the 
harmonic conditions its solution, naturally, is also formu- 
la (37)* But, it is in harmonic state Skohamar; hence, 
the following term of factor becomes infinitely large: 

2<ti k *f sin.2k) ft        .,. 3 / nn + sin nrt \ 
IK.% sm 2%}, A \»

J
TC

£
 sin tin/ (57a) 
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This simply shows the harmonic phenomenon of the 
energy source frequency for this "no loss" antenna system 
in a vacuum. It Can be seen that in this theory, in the 
process of finding a solution using approximations this 
important conclusion has not "been missed« It is the har- 
monic reaction of energy source of a closed system with 
which the antenna and space are connected. This well- 
known phenomenon, and its engineering applications, have 
anyhow its simple mathematical proof. There must exist 
"no loss" conditions in the real universe space we are in, 
and the discharged electro-magnetic wave energy must also 
be absorbed entirely or converted into another energy. 
Hence, k|r must have a positive imaginery number component: 

kl — w* H 82 + ; w pt at: 

where C«.s=0, but, however, is very small. So, the har- 
monic factor in the above formula (37a), though very large, 
will not become infinity. In our simple theory, the natural 
appearance of the harmonic phenomenon of this closed sys- 
tem — nenergy-antenna-space" — is very fortunate. 

Calculation of 0f function caused by the charges on 
the two bases. Similarly, in the integral of the scalar 
potential function $ in formula (32), we arrive at the cut 
radius integral which goes around the branch point X?K+ko, 
and the poles of numerous A.*ms complex numbers of formula 
(33). The residue waves obtained by the integral sur- 
rounding these ;\Jms poles actually disappear little by lit- 
tle as they go away from the energy source (z-ifcO) on the 
antenna. The main component of the integral is obtained 
from the branchcutX«+kg* Using a method similar to the 
previous one in calculating the II function, we can obtain 
the following: 

. ♦-•~G^)(«+£)[3^]!     , (38> 
This scalar potential function $ has no harmonic phenomenon. 

!■ derivation and Discussion of .Spate Important Formulae. 

Based on the calculations of potential vector II ar>d 
potential scalar 0$  derived from the last section, we can 
have quite a detailed discussion on the following important 
topics: 

1. The expansion of (*l+ -^r) i*******/ v/?+7"l ==T<>,*) 
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Expanding the' operational differential of T{TS  z) $  we then 
have 

T(r..) - -^-[-V + »i-^i- -*rj+RTC"*
5
" ~ VJ;   (39} 

where R«vx^+z^* Within the radiation boundary, when 
Xs-***>• is—*«*», and R—*•■««*», only the first term in the bracket 
of formula (59) is still a finite quantity; that is to say, 

"0-,*> ~ R3 ' 
tf*+t*. 

(40) 

Within the induction boundary, and especially on the- sur- 
face of the antenna of a conductor, the three terms in 
formula (39) cannot be disregarded in our calculations» 

2« Antenna radiation energy and antenna efficiency* 
From forsmla (27), induced electric field and magnetic 
field in free space have the following form: 

Jfc-(*i+&>"&* 

Ei, 
6a 

ar as 
~f] 9 

(41) 

or 

In the following calculation, for our later convenience, 
we can propose the definition of the following "Geometric 
Harmonic Factor" g0(h)s 

M (A) = 

J?O(ä) = 
2^2 A + SJB 2fo^ 

2 sia 2fo * 

"•fa 
y «oW (42) 

Substituting sector II and aealar 0 in formulae (37) and 
(38), derived from the proceeding section, into formula 
(41),» we can obtain the different eoBiponents of the electro- 
magnetic field of the radiation boundaryi 

H,8' 
/{feR»«<) / VQ H * "N r 

C^) h««<*>-F 

(43) 
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Within the radiation boundary, the average time value of 
energy flow vector (Wulf-Poyntlng vector} Is 

S-yE2xHf-~^(£>H*8) + K-"^H*)+^(ü)L    (44) 

Its radial component is 

*.—i*«i-(^X£)l««'w-£-«!'w£-l  (45) 

Integrating Sr over the surface of the infinite large 
cylinder, we get the total radial energy flow WrS 

«■df>H~-(^X£)«™[j::>L- U6) 

The second term of'formula (45) Is the odd function z. 
Therefore, its integral is aero» This shows that the com- 
ponent of B2z> ov  s2s plus the second term of the formula, 
brought about by charges on the two bottoms of the antenna, 
does not actually produce radiation. This effect tells 
us that the charges on the two bottoms are the incontinuity 
of the locality of this antenna system.  It merely affects' 
the induced electric field.  Performing the integraion of 
formula (46), we get 

„, _ r (V0 2* p0 bY ^ 1*1 el 1 [48 H   1 _ ) n u*Vl!? ./>J ] [48 ,  ] .  (47> 
'"''-1 ~j^7^r jte"o()i"L I2*  v.»JL35*»(*)j- 

where   p° ~ ^ vo2 n Po *) — (PO 
2 n Po *)  represents the total 

dipole moments of the source of voltage of the thin plate. 
The first term of formula (47) expresses the energy of 
radiation of a dipole with finite moment P0 per second. 
The second term is a dimensionless factor» It expresses the 
radiation efficiency of this finite cylindrical antenna 
compared to the radiation of a lengthless dipole« 

Taking the surface Integral of Sr over the two bot- 
tom surfaces of the cylinder, we get the total radial 
energy flow along ± z. 

It', = f I" ( + S.) 2* r dr) + f [* (-S.) In r dr I    =5 0.    < 48 > 

This is precisely what we desire. Because of the anti- 
symmetry of the voltage and Induction current on the two 
naif-sections of the antenna, the total radial energy flow 



is aero* Talcing radiation» this proves that the üosponentj 
: of the dielectric Hj, of the antenna is disregarded in ■ i 
; calculation» | 

We can see' from the above that the total energy flow 
! of the.'anteana radiation system i» completely exprsssed byj 
i formila {'47)« Suppose w® let i\ 

<49) 

■■■•v. .•'•■'•'" '" _" "       . j 

represent the radiation of a Äertz dipole P0.    W@ can then 
us© ^ to.represent the efficiency of this antenna* 

(50) 
W ^Wtmfm 

where . , . if A*) * g f^±£* *&±.Y ' 

(51) 

When the half »»length (h) of the .antenna, is almost 
equal to one-qa&rter the •'•wave-length (*«0/4) in free space* 
or seal® Multiple of it, the efficiency then becomes very- 
high»    It is also this **antenna and free space11 systej% 
and the frequency of the source of external energy which. 
has radiation harmony«    Previous experience tells us that 
it is correct both in principle and through calculation to 
view the simple theorem of energy srcraree-exeited antenna     \ 
as a real radiation boundary relationship*    Th® .soiree of   | 
energy Itself doe® not directly radiate, but has radiation! 
harmony with "antenna and free space* •'. j. 

3* The Sigcn radiation resistance of center excited 
antenna» Before defining Ügen radiation resistance* wa ' .! 
mist first calculate the radiation component of the current 
in the antenna at ssa^d, -.The latter is the bran'eheut in» I 
tegral in the II function* Prom formlae (2&)9-\87), and i 
(39)f tm get the followingi j 

im . -i±flL^ [l-nl^^^JtfM»)^^; !       (52)' | 

Its effective value is 

iafh Y4 ■■>■■■ .-■■■".: 

i 

Th.&  definition of Blgen radiation resistance, B^ -, can he j 
:determined from the following- fonmlas. j 
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W«(7r.dl)*Ä««. (54) 

From formula (54)» we get .     *  ■ 

$      32 ' . ' ' '„_ (55) 

It is almost one-quarter the radiation resistance of free 
space to normal electro-magnetic wave* From its defini- 
tion, one can see that it is really an Eigen resistance 
with center-excited antenna* and has no relationship to 
the length of the antenna,, 

4» The radiation resistance of center-excited an- 
tenna excitation point« The definition of excitation 
point radiation resistance is 

'<-.«« £«t» ?v. (56).; 

Substituting Ir,eff °^ formula (53) into the.above formula* 
we get 

^1 
4»r3 g0 

W© see from this that it varies as the two follow- 
ing factors vary* geometric harmonic factor g0(h) and 
wai?e length-sectional factor :\)/f

>
0  b. Since the current 

in the antenna varies according to this resistance» It is 
the radiation resistance of cylindrical antenna excitation 
voltage» and the free space system, The two geometrical 
factors above also reveal the importance of the geometric 
structure of this antenna system* The higher frequency 
the external energy source excites, or the shorter the 
wave-length, the smaller will be this resistance, and the 
more effective a radiator will be this antenna» If the 
frequency of external excitation Is stationary, then under 
geometric harmonic conditions (^(h) -~*<**)* the resistance 
is the smallest and the radiation component of the current 
is the greatest. As far as the structure of a cylindrical 
antenna is concerned, this relationship is naturally ob- 
vious» 

5* Distribution of the current radiation component 
on the antenna. From the first term of the II function 
expansion of the current radiation component, the distri- 
buted portion on the anmenna has the following form: 

Ug) * ST58 W&Fcos (*2 '*+* > • Co Ä V io ■       (68) ■ 
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Just as VfB desired*  it Is eq.ua! to the trbernal .voltag© V0f 
however* its distribution lias a werj large difference froai 
a real coaina curve distribution* 

6* . Distribution of total electric current  bn.fchs.    ; 
arrfcönna.    Including the total current of. a radiation sea-   . 
ponenfc and an induction component, its distribution can 
be obtained from the following equations 

«»-^(x&VMfrt-A.s       (68! 

where T(rf s) Is expressed by formula (39), and 

where the radiation current component as expressed by 
förmalA. (58) is calculated from the first term In fcmula 
(60)«»    The other three terms are the Induction components 
of-the current* -At the proximity region, of its antenna 
especially on the antenna, boundary — it ia very important» 
From thiss we get the distribution equation of the  current 
induction coraponsnts 

'M~—tsr*ft(A>L        * "    ' f s    (si) 
+ JtUhl^fUhA.. _ i^ÖL] cos (*2 V^HF- f) •. 

At the mid-point of tb© antenna at a»0,- the ratio of cur- 
rent induction component to the radiation component is 

whore 

(65) 

The reason that the phase angle   V is not exactly 
equal to -*.^f" is because th® method of 'approximation is used 
In the branchcut integrals-calculation of the II function» 
Formula ("62) tails us "two important things J.. first,_wh©n  
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kp f>Q<l»  as In ordinary oases« the value of this ratio is ■ 
very large» 3?hat is to say, the radiation field seems to 
be overhead of a very large induction field having a medium, 
and then leaves the latter and radiates out to free space" 
with the velocity of light c«< In all current measurements 
along the antenna, in fact, we merely measure out the in- 
duction current component since that very small phase 
radiation component, or energy component, is completely 
overpowered by the large induction coaiponent* Second, in 
order to increase the current radiation component, or to 
get out of the antenna*» radiation field, the only way is 
to increase the cross-sectional area or the radius of the 
cylindrical antenna« 

7» She effects of impedance of an antenna» From 
the antenna model In Diagram 1» it can he seen that the 
radiation boundary of every thin layer of current I(^) of 
the conductor is the same* Suppose the change of energy. 
source in the radial direction is in accord with the well- 
known classical formula of current and voltage distribution 
in cylindrical conductors* 

Va—» V0 J0 (Po v'IFiT)/ J0 {a V^PÄf) , '' ( 64 ) 

Then, according to the principle of superposition, we need 
only substitute v*0b, in formula (11), I(£)b, in foraaula 
(IS), and lOh)b, in formula (14), into the following 
formulae t 

(11)4* Vo b > V0 Jo Oo v'IFÄT) dp* /jo (a ^1K) » («) , 

W  + nO * > MO Jo iPo VTERF) itofh (* V*F*T) , (66) 

(14)  + /(+*)* > /„(+*) /.(ft V«-Af) <*/»<,//o 0» V^-Af ) ;     (67) 

3?he aforementioned radiation boundary relationships are 
still fulfilled« In the three formulae above, 

I0(£)
Äth© current volume density on the conductor sur- 

_  p 1ace, 
kf sE^Ttiti •+■ Sty^x»  to *&« antenna conductor! 
X« *■? kg, refers to the main propagational waves in a 

«syllndrical conductor« 
^he potential functions- II0« II, and 0,  resulting 

from fonmlae (17), (20), and (22), all have, in the sense 
of (°0. an extra integral fromf*o»0 to /"ma. The other 
ierivation and generalisation are completely unaffected* 

When a cylindrical antenna is supplied energy by a 
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pair of transmission lines of the same quality and radius, 
tha above transformation and integration will describe very 
accurately the effects of impedance in an antenna« Detail- 
ed calculation is very direct, and it is simplified here/ 

Assume that in the middle of the antenna we use 
other methods of supplying energy then at z*si:0, or at the 
point of input, the distributed function of voltage and 
current on the radius must be determined or described be- 
forehand. Only then can we consider calculation of the 
effects and results of isapedanee in the antenna« 

Ap%e_ndi.3s; 

Derivation of Hertz's differential function formula 
(11) of energy source with voltage Y6«, 

Vector potential A of d*Alembert«s equation 
0»".' '■'■'- 

v.2 A - /«'«-gjr A « - /t J, .(Al) . 

Using reasonable K.K*S. units to calculate, the 
solution is 

4* Ä   * (A2) 

where J(p is along the ^»current volume density direction, 
R is the distance from observation point to volume element' 
«Iipd dS» 'übe equivalent definitive formula of the Hort2 
Ix0 function is 

dA = p s -|-~ (il>). « ~ ju> A s-a ^n«,. .  . - 

Combining formulae (42) and (A3), w© obtain' 

<*n* - JS&JSJL ^(w—, (A4) 
—j 4K to <t R 

The current J(^») on length d£ expresses the opposite 
charges on the two bottom surfaces, their relationships is : 

■a '"'"" 

Two opposite charges ^qdS, a distance of d£ apart, equi- 
valent to a capacitance system, and possessing capacitance 

dc^-^~. (A6) 

Dividing dC by qdS, w© get d? tha two terminals, the 
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voltage difference V0s 

v  _ „5Ü. _ _ii£ m A. «1LQ.K.. (A7) 

where/*»»s qd^ is the unit area*s dipole moment» Substi- 
tuting formula (A7) into formula (A4), we get 

^Hn 
4ff.£ 

So, In a small space dV, the two terminals have the 
energy source of the voltage V"0# equivalent to a similar 
small space with a classical Herts dipole. In the pre- 
ceding part of this thesis, we have used this formula to 
calculate the expansion form of the energy source field* 

10,400 END 
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